SYSTEM AND METHOD FOR PRODUCING MEDICAL IMAGE DATA ONTO PORTABLE DIGITAL RECORDING MEDIA

Inventors: Ken Wright, Chino Hills, CA (US); Chet LaGuardia, Rancho Santa Margarita, CA (US)

Assignee: Datcard Systems, Inc., Irvine, CA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

Appl. No.: 12/491,187
Filed: Jun. 24, 2009

Prior Publication Data

Related U.S. Application Data
Continuation of application No. 11/942,630, filed on Nov. 19, 2007, which is a continuation of application No. 09/761,795, filed on Jan. 17, 2001, now Pat. No. 7,302,164.

Provisional application No. 60/181,985, filed on Feb. 11, 2000.

Int. Cl. H04N 5/91 (2006.01)
U.S. Cl. 386/125; 386/126; 705/2; 705/3

Field of Classification Search 386/95, 386/125, 126; 705/2, 3, 5
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4,491,725 A 1/1985 Pritchard

FOREIGN PATENT DOCUMENTS
CA 2322191 4/2000
DE 198 02 572 A1 8/1999

OTHER PUBLICATIONS

Primary Examiner—Huy T Nguyen
Attorney, Agent, or Firm—Knobbe, Martens, Olson & Bear LLP

ABSTRACT
This application discloses a system for recording medical image data for production on a portable digital recording medium such as CDs and DVDs. This system includes a receiving module, a processing module, and an output module, with viewing program for viewing medical image data stored on the portable digital recording medium. It also discloses a method of storing medical image data on a portable digital recording medium, including the steps of receiving the medical image data, processing the data and storing the data on the portable digital recording medium, with a viewing program for viewing medical image data stored on the portable digital recording medium. It further discloses a method of selecting medical image data for recording on a portable digital recording medium, including the steps of connecting a browsing terminal to a computer database that stores the medical image data, selecting a first set of the medical image data from the computer database, and recording the selected first set of medical image data on the portable digital medium, with a viewing program for viewing the medical image data stored on the portable digital recording medium. It also discloses the method and system of retrieving medical image data that are related to the received/selected original medical image data, and recording the original and related medical image data on a portable digital recording medium.

10 Claims, 5 Drawing Sheets
FOREIGN PATENT DOCUMENTS

eP 0 684 565 A1 11/1995

eP 0 781 032 A3 3/1999

eP 0 952 726 A1 10/1999

GB 2 096 440 A 10/1982


JP 06-261892 A 9/1994

WO WO 97/22297 6/1997

WO WO 00/02202 1/2000

WO WO 00/09416 4/2000

WO WO 00/19416 4/2000

OTHER PUBLICATIONS


U.S. Appl. No. 60/181,985, filed Feb. 11, 2000, Wright et al.

U.S. Appl. No. 60/205,751, filed May 19, 2000, Sumari-Kermuni.


“Antelope Valley Hospital Chooses Algo.tec for Full PACS Installation; Major Los Angeles County Hospital has History of Technological Innovation,” Business Wire, dated Nov. 28, 2000.


“SPEC, Concept, TREXnet HR,” Trex Medical Corp., 10 pages, undated.


510(k) Premarket Notification Database Webpage, FDA: Center for Devices and Radiological Health.


Aims from IMM Advanced Image Management System Software, produced in Dacutard v. Codonics Civil Action No. SACV 98-00063 AHS.


Amendment After Final, U.S. Appl. No. 09/753,792, received Sep. 18, 2008.


Amendment Submitted/Entered with Filing of RCE, U.S. Appl. No. 09/753,792, received Dec. 12, 2005.


Applicant Interview Summary, U.S. Appl. No. 09/753,792, received May 27, 2008.

Areeda Associates Ltd, SeeMor: Image Viewing Software for Windows 95/NT and Macintosh.


Areeda Associates, SeeMor, Demo CD ReadMe.txt File, dated Nov. 11, 1999.


ARRI Oscar Product Brochure, ARRI, Copyright 1999.


Bills of Lading, Invoices, and Packing Lists from Mitra Imaging to Institute de Cardiology de Montreal, dated May 1, 1998.


Cedar SDK Beta 6 change history log, dated Sep. 27, 1999.

Cedar SDK Beta 6 read me file, dated Sep. 27, 1999.

Certified Copy of Transcript of Non-Confidential Portions of Jan. 13, 2009 Deposition of Kenneth L. Wright, including Exhibits (Nos. 23 and 24) thereto.


Christopher N. Smith, “Staffing and Patient Classification in a Post Anesthesia Care Unit,” 1996 Annual HIMSS Conference and Exhibition.


Codonics, Inc.’s Answer and Defenses to DatCard Systems’ Complaint and Counterclaims, filed Mar. 4, 2008.

Codonics, Inc.’s First Set of Requests for Production of Documents and Things, dated Jan. 6, 2008.

Codonics, Inc.’s Initial Invalidity Contentions and Initial Non-Infringement Contentions, dated Oct. 31, 2008.


Codonics, Inc.’s Notice of Motion and Motion for Stay Pending Reexamination of the Patent-in-Suit, filed Dec. 12, 2008.


Codonics, Inc.’s Objections and Responses to DatCard Systems, Inc.’s Second Set of Requests for Production of Documents and Things (Nos. 44-78), dated Nov. 21, 2008.


Codonics, Inc.’s Second Set of Requests for Production of Documents and Things (Nos. 84-195), dated Dec. 5, 2008.

Codonics, Inc.’s Supplemental Responses to DatCard’s First Set of Interrogatories (Nos. 1-8), dated Nov. 6, 2008.


Company Overview Webpage, Trx Medical Corp., Copyright 2000-2008.


CRS-PC/CRS-PC+ 1.3 Conformance Statement for DICOM V3.0, GE Medical Systems, Copyright 2000.


DASM On-Line, produced in Datcard v. Codonics Civil Action No. SACS 08-00063 AIS.


DatCard Systems, Inc.’s First Amended Initial Disclosures, dated Jul. 21, 2008.

DatCard Systems, Inc.’s Initial Disclosures, dated Apr. 16, 2008.


Declaration of M. Kendrick In Support of Motion to Compel Compliance with Subpoena, dated Jan. 15, 2009.


Defendant and Counterclaimant Codonics, Inc.’s First Amended Initial Disclosures, dated Jan. 29, 2009.

Defendant and Counterclaimant Codonics, Inc.’s Initial Disclosures, dated Apr. 16, 2008.

Defendant Codonics, Inc.’s Memorandum in Support of Motion to Compel Compliance with Subpoena to Rimage Corporation, dated Jan. 15, 2009.


DICOM Birmingham 96, Tutorial Rev. 3.0, dated 1996.


DICOMwriter Product Webpage, Heartlab Inc., Copyright 1999.


Donald E. Schildkamp and John A. Callahan, “OR Team Learns While Improving Stock And Reprocessing Workflow,” 1996 Annual HIMSS Conference and Exhibition.


Draft Specifications for Medical Diagnostic Imaging Support (MDIS) System, Apr. 6, 1990.


Edward J. Walkley, Md., “Data-Based Assessment Of Urgent Care In A Pediatric ED,” 1996 Annual HIMSS Conference and Exhibition.


E-mail Communication B. M. Smika, CD RS, 1 page, Feb. 23, 2008.

E-mail Communication B. M. Smika, gastrobase II, 1 page, Feb. 23, 2008.


GE Medical Systems, “Press Information: REVOLUTION XR/i Filmless X-Ray Table Enables Timely Patient Diagnosis and Treatment,” dated Nov. 28, 1999.


Glen Knight, “Project Management For Health Care Professionals,” 1996 Annual HIMSS Conference and Exhibition.


HIMSS-96—the 1996 Annual HIMSS Conference and Exhibition Disc, produced in Datadex vs. Codonics Civil Action No. SACC 82-00063 AHS.


ICMIT, Patient Information Folder Project Demonstration, dated Sep. 11, 1996.
ICMIT, Patient Information Folder Project, dated Jul. 4, 1996.
Impax Price Quotation for Laurie Imaging Center with annotations, dated Apr. 27, 1998.
Invitation from Impax Technology to Agfa Inc. (CAN), dated Nov. 30, 2000.
Invitation from Mitra Imaging to EMED, dated Sep. 30, 1996.
Invitation from Mitra Imaging to Siemens Health Services, dated Mar. 11, 1998.
Invoices from Impax Technology to Agfa Hong Kong Ltd., dated from Jun. 21, 2000 to Aug. 22, 2000.
Invoices from Impax Technology to Agfa-Gevaert Ltd. (AUS), dated from Aug. 25, 2000 to Nov. 28, 2000.
John Glaser, PhD, FHIIMSS and Gilad Kuperman, MD, PhD, “Impact Of Information Events On Medical Care,” 1996 Annual HIMSS Conference and Exhibition.


Kenneth Weiner and George E. Levesque, “This Hospital’s Like A Hotel!”, 1996 Annual HIMSS Conference and Exhibition.


Landen Bain et al., “The Benefits And Implications Of A Statewide Health Information Network For A Major Medical Center,” 1996 Annual HIMSS Conference and Exhibition.


M. Jafar Asadi and William A. Baltz, “Clinical Pathways: The Key To Profitability—An Example To Improve Cost And Efficiency Using Activity-Based Costing,” 1996 Annual HIMSS Conference and Exhibition.


Medical Imaging Technology Associates; Tapestry Read Me, dated May 9, 1997.


Medical Imaging web page for Image Archiving the ASP Way, dated Nov. 2000.
Mediface, PiView 3.0 (3.0.7.0) English Version, “ReadMe. txt,” dated Nov. 10, 1999.
Meeting Notes: XRE / Cantroniens, 3 pages, dated 1998.
Merge Technologies Incorporated, Setting the Course for Electronic Image Management (Feb. 1998).
Minute Order (1) Taking Under Submission Defendant’s Motion for Stay Pending Reexamination of the Patent-in-Suit; and (2) Removing the Matter From the Court’s Feb. 2, 2009 Calendar, dated Jan. 27, 2009.
Mitchell S. Curtis and Austin Brown, “The Role Of Information Systems In Medicaid Managed Care,” 1996 Annual HIMSS Conference and Exhibition.
Mitra CD Writer Software Design Description, Software Rev. 1.0, Doc Rev. 1.0, dated May 21, 1996.
Mitsui Advanced Media Presentation Slides, apparently dated 2000.
Notice of Failure to Comply with Ex Parte Reexamination Request Filing Requirements (37 CFR 1.510(c)), Control No. 90/009,538, mailed Aug. 27, 2009.
Notice of Motion to Compel Compliance with Subpoena to Rimage Corporation, dated Jan. 19, 2009.
Payment from Siemens Nixdorf to Mitra Imaging, dated Apr. 9, 1998.
Philips Medical Systems, 510(k) Summary (Sep. 23, 1999).
Plaintiff DatCard Systems, Inc.’s Third Set of Requests for Production of Documents and Things to Defendant (Nos. 79-111), dated Nov. 18, 2008.
Proposed Order Granting Codonics’ Ex Parte Application for an Order to File Documents Under Seal.
Proposed Order re Defendant’s Motion to Compel Compliance with Subpoena to Rimage Corp., dated Jan. 15, 2009.
Rimage Corporation’s Cross-Motion to Quash the Subpoena to Rimage Corporation, dated Jan. 20, 2009.
Rimage Corporation’s Memorandum of Law in Opposition to Codonics’ Motion to Compel and Cross-Motion to Quash Subpoena, dated Jan. 20, 2009.
Siemens Health Services, Sienet—DICOM Conformance Statement: MagicView 50 Versions VA10A, VA10B and VA10C Revision 2.0 (Nov. 13, 1997).
Siemens Health Services, Sienet MagicRead Film Digitizers.
Siemens Medical Systems, Inc., ACOM.MB 2.2 Basic System DICOM Conformance Statement (May 21, 1999).
Siemens Picture Archiving and Communication System Proposal for Huntsville Hospital, dated Apr. 8, 1999.
Soehl Ag, Radin Version 2.0, dated Nov. 2002, Screen Captures.
Sorna, FilmX Sell Sheet, dated 2000.
Steve Neal and Cynthia L. Brown, “Case Study: Interactive Video Communications In Health Care,” 1996 Annual HIMSS Conference and Exhibition.
Subpoena for the production of documents and things issued by Codonics, Inc. to Agfa Corporation, DatCard Systems, Inc. v. Codonics, Inc., SACV 08-00063 AHS (RNBr), C.D., Cal., dated June 6, 2008.
TDK Medical, Medical CD Recording Station Planning and Installation Manual (2001).
TDK Medical, Quotation and Technical Specification: TDK’s CDROM-J100AD (Jul. 17, 2003).
TDK Medical, Quotation and Technical Specification: TDK’s CDROM-J100AUTOTP (Jul. 17, 2003).


Vepro Computersysteme GmbH, “510(K) Summary” (Jun. 6, 1997).

Vepro Computersysteme GmbH, MEDIMAGE The Image Management System—ACOM Convert DICOM Archiving & Viewing Station, Software Vers. 4.42 (May 9, 1999).


Vepro Computersysteme, Email re: MEDIMAGE Cardio/Angio Viewing Station; MEDIMAGE Image Server; MEDIMAGE CD-ROM Jukebox Server; MEDIMAGE DICOM 3.0 Server Akquisition Station; CARD—Viewing Station; MEDIMAGE Digital Filmrecording & CD-R Archiving Station (Dec. 22, 1997).


VPEO, 17 Years Computer Experience; Company Profile; Letter re: Software Evaluation; Email re: Software Evaluation (Feb-Mar. 1998).


VEDPRO, Centura-Porter Advertisit Hospital Training Reports, dated 1999.

VPEO, Certificate for the Quality Assurance System (Feb. 12, 2004).


VPEO, Serial Number Records for Project Denver, dated Nov. 25, 1999.


W. Brent Peterson, “Strategies For Ambulatory Care Scheduling,” 1996 Annual HIMSS Conference and Exhibition.


Borderless Teleradiology with CHILI, Engelmann et al., Journal of Medical Internet Research, Copyright 1999.
Picture Archiving and Communication Systems (PACS) in Medicine, Huang et al, Copyright 1991.
Consulting with radiologist outside the hospital by using java, SK Lee et al., Radiographics 19:4, Jul-Aug. 1999.
Angiocardiography without cinefilm: information on the new digital imaging interchange standard for cardiology based on DICOM. "Last Updated: Tuesday, Jun. 11, 1996 by Tim Becker."

MergeWorks: A system of flexible building blocks that provide DICOM infrastructure for electronic image management, MergeTechnologies, Inc., "webarchive.org" date "19981202."

MergeWorks: Connect, MergeTechnologies, Inc., "webarchive.org" date "19981203."

MergeWorks: Print, MergeTechnologies, Inc., "webarchive.org" date "19981203."

MergeWorks: Datasheets, MergeTechnologies, Inc., "webarchive.org" date "19990220."


A generic hospital PACS RFP presented to the Seventh RIS-PACS School, Georgetown University Medical Center, JH Perry, Dated Jul. 9, 1997.

A PACS RFP toolkit presented to The Seventh RIS-PACS School, Georgetown University Medical Center, JH Perry, Dated Aug. 11, 1997.

A PACS RFP toolkit presented to The Fifth RIS-PACS School, Georgetown University Medical Center, JH Perry, Dated Feb. 3, 1995.

Project DEPRAD (Deployable Radiology and Teleradiology System) in Bosnia/Hungary, SK Mun, Report Date Mar. 1997.

Radiology and computer science, LV Ackerman, Radiographics 11:6, Nov. 1991.


Multimedia image and data navigation workstation, O Ratib et al., Radiographics. 17:2, Mar.-Apr. 1997.


Lockheed Martin Operating Instructions, Vantage Picture Archiving and Communication System 5.0 Release, dated Aug. 1996.


AIM, Advanced informatics in medicine, EurlPACS, European integrated picture archiving & communication system in the hospital, Merheus et al., dated Dec. 31, 1994.
Clinical Experience with PACS at the University of Pennsylvania, HL Kundel et al., Computerized Medical Imaging and Graphics 15:2, May-Jun. 1991.
DICOM Structured Reporting, David Clunie, Copyright 2000.
Integrating a Personal-Computer Local-Area Network with a Radiology Information System: Value as a Tool for Clinical Research, MS Frank et al., Computers in Radiology, AJR 162, Mar. 1994.
<table>
<thead>
<tr>
<th>IMAGE INPUT FIELDS</th>
<th>AUTO-PRODUCE 1</th>
<th>MRI MACHINE I</th>
<th>MRI MACHINE II</th>
<th>ULTRASOUND MACHINE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELATED DATA STORAGE</td>
<td>PACS 1</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>TARGET PRODUCTION STATION</td>
<td>PACS 1, PACS 2</td>
<td>PACS 1, PACS 2</td>
<td>PACS 1, PACS 2</td>
<td>PACS 1, PACS 2</td>
</tr>
</tbody>
</table>

Figure 2
FIG. 3

122
MONITOR IMAGE SERVER DATABASE

124
DATABASE CHANGING?

126
YES

128
TIME-STAMP START OF CHANGE

130
WAIT FOR AN INTERVAL

132
DATABASE STILL CHANGING?

134
SEND CHANGED DATA TO APPLICATION SERVER DATABASE

136
FIND INPUT IMAGE DEVICE NAME/ID

138
FIND PROFILE RECORD FOR INPUT IMAGE DEVICE

140
AUTO-PRODUCE?

142
SEND CHANGED DATA, CONFIGURATION DATA AND VIEWING PROGRAM TO TARGET PRODUCTION STATION

143
RETRIEVE RELATED IMAGE DATA AND SEND TO TARGET PRODUCTION STATION

144
ADD AUDIT RECORD

146
WAIT FOR COMPLETION SIGNAL FROM PRODUCTION SECTION

148
UPDATE AUDIT RECORD
CONNECT TO APPLICATION SERVER

ENTER ID AND PASSWORD

AUTHORIZED?

SELECT A PATIENT

SELECT EXAMS

SELECT ANOTHER PATIENT?

SELECT A PRODUCTION STATION

SEND SELECTED EXAMS TO SELECTED PRODUCTION STATION

FIG. 4
CONNECT TO APPLICATION SERVER

ENTER ID AND PASSWORD

AUTHORIZED?

SELECT A PATIENT

SELECT EXAMS

FIND RELATED IMAGE DATA?

SELECT ANOTHER PATIENT?

SELECT A PRODUCTION STATION

SEND SELECTED IMAGE DATA TO SELECTED PRODUCTION STATION

FIG. 5
SYSTEM AND METHOD FOR PRODUCING MEDICAL IMAGE DATA ON PORTABLE DIGITAL RECORDING MEDIA

CROSS-REFERENCE TO RELATED APPLICATIONS


BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a system and method for the production of medical image data on portable digital recording media such as compact discs. More particularly, it relates to a system and method for receiving medical image data, processing medical image data, and transmitting medical image data to be recorded on a portable digital recording medium.

2. Description of the Related Art

Since the invention of the x-ray film, film has been the predominant multipurpose medium for the acquisition, storage, and distribution of medical images. However, the storage and distribution of film often requires considerable expenses in labor and storage space.

Today’s modern hospitals utilize computer-aided imaging devices such as Computed Tomography (CT), Digital Subtracted Angiography, and Magnetic Resonance Imaging (MRI). These digital devices can generate hundreds of images in a matter of seconds. Many hospitals require these images to be printed on film for storage and distribution. To print complete sets of medical images from these digital devices, the cost in film material, storage space, and management efforts is often very high.

Some radiology departments have installed digital image storage and management systems known as PACS (Picture Archiving Communication Systems). PACS are capable of storing a large amount of medical image data in digital form. PACS are made by manufacturers including GE, Siemens, and Fuji.

To ease the communication of data, the DICOM (Digital Imaging and Communications in Medicine) standard was developed by ACR-NEMA (American College of Radiology-National Electrical Manufacturers’ Association) for communication between medical imaging devices and PACS. In addition to the examined images, patient demographics, and exam information such as patient name, patient age, exam number, exam modality, exam machine name, and exam date can also be stored and retrieved in DICOM compatible data format. A DICOM file stores patient and exam information in the header of the file, followed by the exam images. PACS store medical image data in DICOM format.

Digital medical image data can be stored on PACS and distributed using the Internet. However, many physicians’ offices do not have the bandwidth suitable for fast download of medical image data. The concerns for medical data privacy and Internet security further reduce the desirability of Internet distribution.

SUMMARY OF THE INVENTION

The claimed system allows for digital medical image data to be produced on a portable digital recording medium such as a CD. A CD containing the medical image data can be distributed to physicians, hospitals, patients, insurance companies, etc. One embodiment of the claimed system allows for medical image data to be placed on a CD along with a viewing program, so that a user can use any computer compatible with the CD to view the medical image data on the CD. One embodiment of the claimed system allows for searching medical exam data that are related and placing such data on the same CD.

One embodiment of the claimed system comprises a receiving module configured to receive medical image data, a processing module configured to process the received medical image data, and an output module configured to transmit the processed medical image data to a production station configured to produce the transmitted medical image data on portable digital recording medium, such as a CD. In one embodiment, the output module transmits a viewing program configured to view medical image data to the production station so that the viewing program is produced on the same CD as the medical image data. In another embodiment, the CD already contains the viewing program before the medical image data is transmitted to the CD production station.

In one embodiment of the claimed system, the processing module is configured to create and store audit information of the portable digital recording medium produced by the production station.

In another embodiment of the claimed system, the processing module is configured to identify the originating image input device of the received medical image data, and determine, on the basis of the originating image input device, whether to transmit the received medical image data to a production station. The processing module also selects, on the basis of the originating image input device, one of multiple production stations as the target production station.

Yet another embodiment of the claimed system is configured to retrieve medical image data that are related to the received medical image data, and transmit the retrieved related image data to the production station. In one embodiment, exam images of the same patient are considered related. In another embodiment, exam images of the same patient and the same modality are considered related. For example, two x-ray exams on the left hand of the same patient are considered related. In yet another embodiment, exam images of the same patient, the same modality and taken within a specified date range are considered related. For example, two x-ray exams on the left hand of the same patient taken within a two-month period are considered related. A hospital may also determine other scenarios of relatedness.

One claimed method comprises the steps of connecting a browsing terminal to a computer database configured to store medical image data, selecting medical image data from medical image data stored on the database, and recording the selected medical image data on portable digital recording medium. In one embodiment, the claimed method also comprises a step of recording a viewing program configured to view medical image data on the portable digital recording medium.

One embodiment of the claimed method further comprises the steps of finding and retrieving medical image data that are
related to the selected medical image data, and recording related image data to portable digital recording medium.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates one embodiment of an image production system comprising an application server and portable digital recording medium production stations.

FIG. 2 illustrates sample records of one embodiment of an input device profile table.

FIG. 3 illustrates a process of receiving image data from the image server, processed receiving image data, and transmitting such data to the production station. This process also retrieves and transmits related image data for production.

FIG. 4 illustrates a process of a user selecting and ordering the production of image data stored on the application server, with the option of selecting and ordering the production of related image data.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 illustrates one embodiment of an image production system comprising an application server and one or more portable digital recording medium production stations. The preferred embodiment, the production stations are CD (Compact Disc) production stations. Digital portatable recording medium comprises CDs and DVDs (Digital Versatile Disc or Digital Video Disc). CD may comprise CD-ROM (Compact Disc Read Only Memory), CD-R (Compact Disc Recordable), and CD-RW (Compact Disc Recordable and Writable). DVDs may comprise DVD-ROM (DVD Read Only Memory), DVD-R (DVD Recordable) and DVD-RAM (a standard for DVDs that can be read and written many times). Thus, although the following description refers primarily to CDs, those of ordinary skill in the art will understand that any suitable portable digital recording medium can be substituted for CDs.

The application server is connected to one or more physician browsing terminals through a computer network. Each physician browsing terminal comprises a browsing program such as Internet Explorer or Netscape Communicator. Physicians or their assistants launch the browsing program to access the application server through the network in order to select medical image data stored on the application server database to be produced by a production station. The physician browsing terminals are connected to the application server through an Intranet. One embodiment of the Intranet utilizes TCP/IP network protocol. The Intranet can connect one radiology department, multiple departments within a hospital, or multiple hospitals. In another embodiment the browsing terminals are connected to the application server through the Internet.

Still referring to FIG. 1, the application server is also connected to a medical data storage unit. The medical data storage unit is further connected to image input devices such as PACS, MRI machines, CT-scan machines, and ultrasound machines. In the preferred embodiment, the image server receives medical image data from image input devices such as PACS, MRI machines, CT-scan machines and ultrasound machines and stores such medical image data in the image server database. A high-resolution image scanner is also connected to the image server, so that medical image data stored on film can be scanned on the image scanner, transmitted to the image server and stored in the image server database. In one embodiment, the image scanner also converts the scanned image to DICOM format. The application server receives input image data from the image server database, processes the received image data, and sends the image data to one of the production stations to produce CDs.

The application server comprises a viewing program, an application server database that stores image data received from the image server, a production history database that stores audit records on each CD produced, a display terminal for programming and operating the application server, and an image input device profile table.

Still referring to FIG. 1, the viewing program is configured to allow users to read and manipulate medical image data. The viewing program comprises multiple image manipulation functions, such as rotating images, zooming in and out, measuring the distance between two points, etc. The viewing program also allows users to read the patient demographics and exam information associated with the image data. The viewing program is used in the preferred embodiment is produced by eFilm Medical Inc. located in Toronto, Canada. The viewing program is used in the preferred embodiment is an abbreviated version with fewer functions and takes less storage space, in order to maximize the storage space for image data on a CD. The image server used in the preferred embodiment is also made by eFilm Medical Inc.

The CD production stations in the preferred embodiment are produced by Rimage Corporation in Edina, Minn. Details about the Rimage CD production stations can be found in U.S. Pat. Nos. 5,542,768, 5,734,629, 5,914,918, 5,946,276, and 6,041,703, which are incorporated herein by reference in their entirety.

The application server runs on a personal computer running a 400 MHz Celeron or Pentium II/III chip, with Windows 98 or NT as the operating system.

FIG. 2 illustrates sample records of one embodiment of an image input device profile table. The image input device profile table contains a profile record for each image input device. Each image input device's profile record comprises: (1) an "auto-produce" logical field indicating whether medical image data from this image input device should be produced on CD automatically by the image production system, (2) a "target production station" field identifying one of the production stations on which medical image data is to be produced, and (3) a "related data storage" field identifying the medical image data storage unit in which to search for the related image data. The medical image data storage unit is a storage unit that stores medical image data and is connected to the application server. In one embodiment, a medical image data storage unit is connected to the application server through the Internet.

In FIG. 2, the sample profile table contains profile records for MRI Machine I, MRI Machine II, and Ultrasound Machine I. For MRI Machine I, the "auto-produce" field contains a "yes" value, directing the image production system to automatically produce image data originating from MRI Machine I on portable digital recording medium. Its
“target production station” field 252 contains a “Production Station A” value, directing the image production system 100 to produce image data originating from MRI Machine I on production station 1. Its “related data storage” field 254 is “PACS I,” directing the image production system 100 to retrieve related medical image data from PACS I. For MRI Machine II, the “auto-produce” field 250 is “no,” directing the image production system 100 to not automatically produce image data originating from MRI Machine II on portable digital recording medium. Since image data from MRI Machine II will not be automatically produced, the “target production station” field 252 and the “related data storage” field 254 are irrelevant. For Ultrasound Machine I, the “auto-produce” field 250 is “yes,” and its “target production” field 252 is “Production Station B.” Its “related data storage” field 254 contains a value of “PACS I, PACS II,” directing the image production system 100 to search PACS I and PACS II for related medical image data.

FIG. 3 illustrates a process of the application server 110 receiving image data from the image server 200, processing the received image data, and transmitting such data to the production station 300A, 300B, 300C or 300C. The application server 110 continuously monitors the image server database 202 in step 122. In one embodiment, the application server continuously “pings” the network address corresponding to the image server 200 on the network that connects the application server 110 with the image server 200.

Still referring to FIG. 3, the application server 110 determines if the image server database 202 is changing, in step 124. In the preferred embodiment, the application server 110 makes that determination by detecting whether the image server database 202 is increasing in size. If there is no change in the image server database 202, then the application server 110 returns to step 122 to continue monitoring. If there is change in the image server database 202, then the application server 110 proceeds to step 126 and time-stamps the moment that the change started. The application server 110 then proceeds to step 128 and waits for an interval, typically 35 to 65 seconds. After the interval, the application server 110 checks whether the image server database 202 is still changing, in step 130. If the image server database 202 is still changing then the application server 110 returns to step 128 to wait for another interval. If the image server database 202 is no longer changing, then the application server 110 proceeds to step 132 and copies the data changed since the time-stamped moment. This changed data is copied from the image server database 202 to the application server database 114.

The application server 110 proceeds to step 134 and finds the input image device name or identification number from the newly received image data. In the preferred embodiment, image data from the image server database 202 are stored in DICOM format, and the input image device name or identification number is stored in the header of the DICOM format image data file. The input image device name/ID indicates the origin of the newly received data. The application server 110 proceeds to step 136 and uses the found input image device name/ID to find a corresponding profile record in the image input device profile table 120. If the profile record has an “auto-produce” field 250 with a “no” value, the application server 110 returns from step 138 to step 122 to continue monitoring the image server database 202. If the “auto-produce” field 250 contains a “yes” value, the application server 110 proceeds from step 138 to step 140, and determines the target production station 300A, 300B, 300C or 300C from the “target production station” field 252 of the profile record. In step 140, the application server 110 also determines the value in the “related data storage” field 254 of the profile record.

Still referring to FIG. 3, in step 142, the application server 110 sends a copy of the newly received data, along with a copy of the viewing program 112, to the target production station 300A, 300B, 300C in step 144. With the viewing program attached, the image data on each CD produced by the target production station 300A, 300B, 300C can be viewed on any computer that accepts the CD, regardless of whether that computer has its own viewing program installed. In one embodiment, the data received in step 132 is stored in the application server database 114 before it is transmitted to the target production station 300A, 300B, 300C in step 142. In another embodiment, the application server 110 transmits the data received in step 132 to the target production station 300A, 300B, 300C, without storing a copy of the data in the application server database 114.

In one embodiment, the application server 110 does not send a copy of the viewing program 112 to the target production station during step 142. Rather, the application server 110 sends a copy of the received medical image data to the production station 300A, 300B, 300C to be recorded on pre-burned CDs. Each pre-burned CD contains a viewing program already recorded onto the CD before step 142.

In step 142, the application server 110 also sends configuration data to the target production station 300A, 300B, 300C. The configuration data comprises a label-printing file comprising the specification for printing labels on top of the CDs, and “a number of copies” value indicating the number of copies of CDs to be produced. A typical specification in the label-printing file may specify information such as patient name, exam modality, hospital name, physician name, production date, etc. to be printed by the target production station as a label on the top of each CD produced.

Still referring to FIG. 3, in step 143, the application server 110 searches the application server database 114 for image data related to the newly received data. The application server 110 then searches the PACS systems identified in the “related data storage” field 254 in step 140 for data related to the newly received data. Some PACS systems each comprise a primary image data storage and an archive image data storage, and the application server 110 searches both the primary image data storage and the archive image data storage on these PACS systems. The application server 110 is connected to the PACS systems through the image server 200. The application server 110 retrieves found related data from the PACS systems and stores a copy of such found related data in the application server database 114. The application server 110 sends a copy of related data that are found from the application server database 114 or the PACS systems to the target production station 300A, 300B, 300C. The medical image data originally received in step 132 and the related medical image data are produced by the target production station 300A, 300B, 300C on the same CDs for comparative study.

For each CD to be produced, the application server 110 adds one audit record to the production history database 116 in step 144. The new audit record comprises the identification number of the CD and other relevant information about the CD, such as the physician who requested the production (if any), and the names of the patients whose exam images are on that CD.

Steps 142, 143 and 144 may be executed immediately before, concurrent with, or immediately after one another. The target production station 300A, 300B, 300C produces the CDs containing the medical image data and the viewing program sent to it, and prints a label on top of every CD, corresponding to the specification in the label-printing file. The number of CDs produced corresponds to the “number of copies” number sent by the application server 110 in
When the target production station has produced the CDs, the production station returns a "completed" signal to the application server 110. The application server 110 waits for this signal in step 146.

Fig. 4 illustrates a process of a user selecting and ordering the production of image data stored on the application server 110. A user, typically a physician or physician’s assistant, accesses the application server database 114 from a browsing terminal 400A, 400B or 400C connected to a network 600. In one embodiment, the user launches a browser such as Microsoft Internet Explorer or Netscape Communicator, and specifies a network address corresponding to the application server 110, in step 150. In another embodiment, the user clicks a pre-defined icon that directly launches a browser connecting to the application server 110. The application server 110 prompts the user to enter a password or an identification name coupled with a password, in step 152. The application server 110 checks if the entered identification/password is authorized in step 154. If the entered identification/password is not authorized the user is prompted to re-enter in step 156. If the entered identification/password is authorized then the user is allowed access to the application server database 114 and the application server 110 proceeds to step 158.

In step 158, the user is prompted to select a patient from a list of patients with exam images in the application server database 114. The user is then shown a list of the selected patient’s exams, and is prompted to select one or more exams of that patient, in step 158. When the user indicates that he/she has completed selecting all exams for that patient, the user is asked in step 160 whether to select another patient from the list of patients. If the user answers "yes", the user is returned to step 156 to select another patient. If the user answers "no", the user proceeds to step 162.

In another embodiment, when a user selects a patient, all exams belonging to that patient will be automatically selected without prompting for user selection. In yet another embodiment, the user is not prompted to select patients, but is only prompted to select exams from a list of all exams for all patients contained in the application server database 114. When the user indicates that he/she has completed selecting the exam, the user is prompted to select a production station from a list of production stations 300A, 300B and 300C in step 160. The user is also prompted to enter additional label text to be printed as labels on the CDs to be produced, to supplement the text printed according to the specification of the label-printing file. The user can advantageously select the production station closest to his/her office. In one embodiment, only one production station is connected to the application server 110, and the lone production station will be the selected production station without prompting for user selection.

In one embodiment, the user is also prompted to select the number of copies of CDs to be produced. In another embodiment, the number of copies is set at one without prompting for user direction. As described above in connection with Fig. 3, in step 164, the application server 110 sends a copy of the image data of the selected exams for the selected patients to the selected production station, along with a copy of the viewing program 112, and configuration data comprising a label-printing file, additional label text, and a number indicating the number of copies of CDs to be produced. The production stations 300A, 300B or 300C then produces one or more CDs containing the selected exams and the viewing program, with labels printed on top of the CDs according to the specification in the label-printing file and the user-entered additional label text.

In another embodiment, a user accesses the application server database 114 not from a browsing terminal 400A, 400B or 400C, but directly from the display terminal 118. In this embodiment the user directly proceeds from step 158. In this embodiment the user is typically a programmer or operator of the image production system 100.

Fig. 5 illustrates a process of a user selecting and ordering the production of image data stored on the application server 110, with the additional option of selecting and ordering the production of related data for comparative study. As described above in connection with Fig. 4, a user connects to the application server 110 from a browsing terminal 400A, 400B or 400C in step 170. The user enters identification information and a password in step 172. Step 174 determines whether the user is authorized to access the application server database 114. If authorized, the user is prompted to select a patient in step 176, and selects exams of the selected patient in step 178. The user is then asked in step 180 if he/she desires to find related data of that patient for comparative study.

If the user answers yes, the application server 110 then searches for related data. The application server 110 finds the image input device profile table 120 profile record corresponding to the image input device from which the selected data originates, identifies the list of PACS systems stored in the "related data storage" field 254, and searches these PACS systems for related data. In another embodiment, once the user has selected a patient/exam combination, the application server 110 automatically searches for related data without asking for user direction. In this embodiment, the application server 110 alerts the user if related data are found. In one embodiment, the application server 110 also searches the application server database 114 for related mediial image data.

Still referring to Fig. 5, the user is then prompted to select all or some of the related data from the list of found related data for production, in step 184. In another embodiment, all found related data are automatically selected by the application server 110 for production, without prompting for user selection.

The user is then prompted to select another patient in step 186. After the user has completed selecting all patients, the user is prompted to select a production station 300A, 300B or 300C in step 188. The user is also prompted to enter additional label text. In step 190, the application server 110 then sends a copy of the original and selected related data, along with a copy of the viewing program 112, a number indicating the number of copies to be produced, additional label text, and a label-printing file to the selected production station 300A, 300B or 300C for production.

The above paragraphs describe the application server 110 with one database 114 for image data storage. In another embodiment, the application server 110 includes two databases for image data storage: a new database and a storage data database. The new database stores only the most recent batch of new data just received from the image server 200. After the data in the new database is sent to a production station 300A, 300B or 300C, the application server 110 erases data in the new database. The storage
data database stores all data that has ever been received from the image server database 202. In the processes described by FIG. 4 and FIG. 5, a user selects images for production from the storage data database.

Several modules are described in the specification and the claims. The modules may advantageously be configured to reside on an addressable storage medium and configured to execute on one or more processors. The modules may include, but are not limited to, software or hardware components that perform certain tasks. Thus, a module may include, for example, object-oriented software components, class components, processes methods, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. Modules may be integrated into a smaller number of modules. One module may also be separated into multiple modules.

Although the foregoing has been a description and illustration of specific embodiments of the invention, various modifications and changes can be made thereto by persons skilled in the art, without departing from the scope and spirit of the invention as defined by the following claims.

What is claimed is:

1. A computer-implemented method for automatically generating a portable computer-readable medium containing medical data related to a patient, comprising:
   receiving, via computer-implemented interface a request for medical data related to the patient;
   automatically searching a first computer database for a first database interface related to the patient based on the received request;
   automatically retrieving the first set of medical imaging data related to the patient;
   automatically searching, based on the received request, a second computer database for a second database interface for additional medical data also related to the patient, wherein the second interface is different from the first interface;
   automatically receiving the additional related medical data;
   and
   automatically generating a portable computer-readable medium, at a production station, containing the first set of medical imaging data related to the patient and the additional related medical data, wherein the medical imaging data is formatted in a standard medical imaging format used by a computer configured for viewing the medical imaging data.

2. The method of claim 1, wherein the second computer database is remote from the first computer database and searching the second computer database via the second interface comprises sending a search request to a remote server coupled to the second computer database.

3. The method of claim 1, wherein searching for additional medical data related to the patient comprises:
   automatically checking an electronic profile table to determine that the second computer database has related medical data; and
   searching the second computer database via the second interface for the additional related medical data.

4. The method of claim 1, wherein searching for additional medical data related to the patient comprises:
   automatically checking an electronic profile table to determine that the second computer database has medical data that is also related to the patient; and
   searching the second computer database via the second interface using a unique identifier associated with the patient.

5. The method of claim 1, wherein searching the second computer database comprises determining metadata related to the first set of medical imaging data; and searching the second computer database comprises searching the second computer database via the second interface using the metadata.

6. A system for automatically generating a portable computer-readable medium containing medical data related to a patient, comprising:
   a first database configured to store medical data related to the patient;
   a second database configured to store medical data related to the patient, the second database being distinct from the first database;
   a computer-implemented interface configured to receive a request for medical data related to the patient;
   an application server coupled to the first database and the second database, said application server being configured to:
   send a search request, based on the received request, via a first interface to the first computer database for a first set of medical imaging data related to the patient;
   receive from the first database the first set of medical imaging data related to the patient;
   send a search request, based on the received request, via a second interface to the second computer database for additional medical data also related to the patient, wherein the second interface is different from the first interface;
   and
   receive from the second database the additional related medical data;
   and
   a production station configured to generate a portable computer-readable medium containing the first set of medical imaging data related to the patient and the additional related medical data, wherein the medical imaging data is formatted in a standard medical imaging format used by a computer configured for viewing the medical imaging data.

7. The system of claim 6, wherein the second computer database is remote from the first computer database and searching the second computer database via the second interface comprises sending a search request to a remote server coupled to the second computer database.

8. The system of claim 6, wherein the application server is further configured to:
   check an electronic profile table to determine that the second computer database has related medical data; and
   choose to send a search to the second computer database via the second interface for the additional related medical data.

9. The system of claim 6, wherein the application server is further configured to:
   check an electronic profile table to determine that the second computer database has medical data that is also related to the patient; and
   send a search request to the second computer database via the second interface using a unique identifier associated with the patient.

10. The system of claim 6, wherein the application server is further configured to:
    determine metadata related to the first set of medical imaging data; and wherein the search sent to the second computer database via the second interface is generated based on the metadata.

* * * * *
Title Page, at (Item 56), Page 5, Column 2, Line 27, Under Other Publications, change “Heath” to --Health--.

Title Page, at (Item 56), Page 5, Column 2, Line 34, Under Other Publications, change “all,” to --al--.

Title Page, at (Item 56), Page 6, Column 1, Line 45, Under Other Publications, change “Domain” to --Domain--.

Title Page, at (Item 56), Page 6, Column 2, Line 27, Under Other Publications, change “Journal” to --Journal--.

Title Page, at (Item 56), Page 7, Column 1, Line 50, Under Other Publications, change “Baffiers,” to --Barriers--.

Title Page, at (Item 56), Page 10, Column 2, Line 3, Under Other Publications, change “Description” to --Description--.

Title Page, at (Item 56), Page 12, Column 1, Line 14, Under Other Publications, change “Summy,” to --Summary--.

Title Page, at (Item 56), Page 15, Column 2, Line 24, Under Other Publications, change “VEDPRO,” to --VEPRO--.

Title Page, at (Item 56), Page 15, Column 2, Line 24, Under Other Publications, change “Advertist” to --Adventist--.

Title Page, at (Item 56), Page 17, Column 2, Line 41, Under Other Publications, change “Mamnunome” to --Mammone--.

Title Page, at (Item 56), Page 18, Column 1, Line 33, Under Other Publications, change “and Progranunen” to --und Programmen--.

Signed and Sealed this

Fourteenth Day of December, 2010

[Signature]

David J. Kappos
Director of the United States Patent and Trademark Office
Title Page, at (Item 56), Page 18, Column 1, Line 34, Under Other Publications, change “Archivierungs-and” to --Archivierungs und--.

At Sheet 3 of 5 (Box No. 146) (FIG. 3), Line 2, Change “SECTION” to --STATION--.

At Column 9, Line 27, In Claim 1, change “interface” to --interface--.